4.7 Article

Decrypting the electrophysiological individuality of the human brain: Identification of individuals based on resting-state EEG activity

期刊

NEUROIMAGE
卷 197, 期 -, 页码 470-481

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.neuroimage.2019.04.005

关键词

Biomarker; Identification; EEG; Resting-state; Functional connectivity; Effective connectivity; Machine learning

资金

  1. SNF (Swiss National Science Foundation) through two grants [136249, 320030_163149]

向作者/读者索取更多资源

Biometric identification (BI) of individuals is a fast-growing field of research that is producing increasingly sophisticated applications in several spheres of everyday life. Previous magnetic resonance imaging (MRI) studies have demonstrated that based on the high inter-individual variability of brain structure and function, it is possible to identify individuals with high accuracy. Otherwise, there is the common belief that electroencephalographic (EEG) data recorded at the surface of the scalp are too noisy for identification purposes with a comparably high hit rate. In the present work, we compared BI quality (F1-scores, accuracy, sensitivity, and specificity) between different types of functional (instantaneous, lagged, and total coherence, phase synchronization, correlation, and mutual information) and effective (Granger causality, phase synchronization, and coherence) connectivity measures. Results revealed that across functional connectivity metrics, identification accuracy was in the range of 0.98-1, whereas sensitivity and Fl-scores were between 0.00 and 1 and specificity was between 0.99 and 1. BI was higher for the connectivity metrics that are contaminated by volume conduction (instantaneous connectivity) compared to those that are unaffected by this variable (lagged connectivity). Support vector machine and neural network algorithms yielded the highest BI, followed by random forest and weighted k-nearest neighborhood, whereas linear discriminant analysis was less accurate. These results provide cross-validated counterevidence to the belief that EEG data are too noisy for identification purposes and demonstrate that functional and effective connectivity metrics are particularly suited for BI applications with comparable accuracy to MRI. Our results have important implications for fast, low-cost, and mobile BI applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据