4.7 Article

Differential convolutional neural network

期刊

NEURAL NETWORKS
卷 116, 期 -, 页码 279-287

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.neunet.2019.04.025

关键词

Convolutional neural networks; Deep learning; Image classification; Convolution techniques; Pattern recognition; Machine learning

向作者/读者索取更多资源

Convolutional neural networks with strong representation ability of deep structures have ever increasing popularity in many research areas. The main difference of Convolutional Neural Networks with respect to existing similar artificial neural networks is the inclusion of the convolutional part. This inclusion directly increases the performance of artificial neural networks. This fact has led to the development of many different convolutional models and techniques. In this work, a novel convolution technique named as Differential Convolution and updated error back-propagation algorithm is proposed. The proposed technique aims to transfer feature maps containing directional activation differences to the next layer. This implementation takes the idea of how convolved features change on the feature map into consideration. In a sense, this process adapts the mathematical differentiation operation into the convolutional process. Proposed improved back propagation algorithm also considers neighborhood activation errors. This property increases the classification performance without changing the number of filters. Four different experiment sets were performed to observe the performance and the adaptability of the differential convolution technique. In the first experiment set utilization of the differential convolution on a traditional convolutional neural network structure made a performance boost up to 55.29% for the test accuracy. In the second experiment set differential convolution adaptation raised the top1 and top5 test accuracies of AlexNet by 5.3% and 4.75% on ImageNet dataset. In the third experiment set differential convolution utilized model outperformed all compared convolutional structures. In the fourth experiment set, the Differential VGGNet model obtained by adapting proposed differential convolution technique performed 93.58% and 75.06% accuracy values for CIFAR10 and CI-FAR100 datasets, respectively. The accuracy values of the Differential NIN model containing differential convolution operation were 92.44% and 72.65% for the same datasets. In these experiment sets, it was observed that the differential convolution technique outperformed both traditional convolution and other compared convolution techniques. In addition, easy adaptation of the proposed technique to different convolutional structures and its efficiency demonstrate that popular deep learning models may be improved with differential convolution. (C) 2019 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据