4.5 Article

Low-drift and real-time lidar odometry and mapping

期刊

AUTONOMOUS ROBOTS
卷 41, 期 2, 页码 401-416

出版社

SPRINGER
DOI: 10.1007/s10514-016-9548-2

关键词

Ego-motion estimation; Mapping; Continuous-time; Lidar

资金

  1. National Science Foundation [IIS-1328930]

向作者/读者索取更多资源

Here we propose a real-time method for low-drift odometry and mapping using range measurements from a 3D laser scanner moving in 6-DOF. The problem is hard because the range measurements are received at different times, and errors in motion estimation (especially without an external reference such as GPS) cause mis-registration of the resulting point cloud. To date, coherent 3D maps have been built by off-line batch methods, often using loop closure to correct for drift over time. Our method achieves both low-drift in motion estimation and low-computational complexity. The key idea that makes this level of performance possible is the division of the complex problem of Simultaneous Localization and Mapping, which seeks to optimize a large number of variables simultaneously, into two algorithms. One algorithm performs odometry at a high-frequency but at low fidelity to estimate velocity of the laser scanner. Although not necessary, if an IMU is available, it can provide a motion prior and mitigate for gross, high-frequency motion. A second algorithm runs at an order of magnitude lower frequency for fine matching and registration of the point cloud. Combination of the two algorithms allows map creation in real-time. Our method has been evaluated by indoor and outdoor experiments as well as the KITTI odometry benchmark. The results indicate that the proposed method can achieve accuracy comparable to the state of the art offline, batch methods.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据