4.8 Article

DEAD-box ATPases are global regulators of phase-separated organelles

期刊

NATURE
卷 573, 期 7772, 页码 144-+

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41586-019-1502-y

关键词

-

资金

  1. Human Frontier Science Program (HFSP) postdoctoral fellowship [LT000914/2015]
  2. ETH postdoctoral fellowship [FEL-37-14-2]
  3. EMBO long-term fellowship [ALTF 290-2014, EMBOCOFUND2012, GA-2012-600394, ALTF 870-2014]
  4. Swiss National Science Foundation [SNF 31003A_179275, 31003A_159731]
  5. Swiss National Science Foundation (SNF) [31003A_179275, 31003A_159731] Funding Source: Swiss National Science Foundation (SNF)

向作者/读者索取更多资源

The ability of proteins and nucleic acids to undergo liquid-liquid phase separation has recently emerged as an important molecular principle of how cells rapidly and reversibly compartmentalize their components into membrane-less organelles such as the nucleolus, processing bodies or stress granules(1,2). How the assembly and turnover of these organelles are controlled, and how these biological condensates selectively recruit or release components are poorly understood. Here we show that members of the large and highly abundant family of RNA-dependent DEAD-box ATPases (DDXs)(3) are regulators of RNA-containing phase-separated organelles in prokaryotes and eukaryotes. Using in vitro reconstitution and in vivo experiments, we demonstrate that DDXs promote phase separation in their ATP-bound form, whereas ATP hydrolysis induces compartment turnover and release of RNA. This mechanism of membrane-less organelle regulation reveals a principle of cellular organization that is conserved from bacteria to humans. Furthermore, we show that DDXs control RNA flux into and out of phase-separated organelles, and thus propose that a cellular network of dynamic, DDX-controlled compartments establishes biochemical reaction centres that provide cells with spatial and temporal control of various RNA-processing steps, which could regulate the composition and fate of ribonucleoprotein particles.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据