4.6 Article

Phononic thermal transport properties of C3N nanotubes

期刊

NANOTECHNOLOGY
卷 31, 期 3, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/1361-6528/ab4834

关键词

C3N nanotube; thermal conductivity; reverse nonequilibrium molecular dynamics

向作者/读者索取更多资源

Reverse nonequilibrium molecular dynamics (RNEMD) is employed to study the phononic thermal transport properties of C3N nanotubes. We study the effect of nanotube length and diameter on the thermal conductivity and investigate the phonon transport transition from ballistic to diffusive regime in C3N nanotubes. It is found that the thermal conductivity of C3N nanotubes is significantly lower than those of carbon nanotubes across the entire ballistic-diffusive range. In addition, significantly lower ballistic to diffusive transition length (72-80 nm) is observed in C3N nanotubes compared to carbon nanotubes. The inspection of phonon dispersion curves shows that carbon nanotubes have stiffer acoustic modes than C3N nanotubes which results in lower group velocities for C3N nanotubes. Due to the presence of nitrogen atoms, the phonon mean free paths and relaxation times of C3N nanotubes are shorter than those of the carbon nanotubes. The combined effect of lower group velocities and relaxation times leads to the lower thermal conductivity of C3N nanotubes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据