4.7 Article

Rock slope stability analyses using extreme learning neural network and terminal steepest descent algorithm

期刊

AUTOMATION IN CONSTRUCTION
卷 65, 期 -, 页码 42-50

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.autcon.2016.02.004

关键词

Factor of safety; Decision-making; Uncertainty; Finite time; Convergence

向作者/读者索取更多资源

The analysis of rock slope stability is a classical problem for geotechnical engineers. However, for practicing engineers, proper software is not usually user friendly, and additional resources capable of providing information useful for decision-making are required. This study developed a convenient tool that can provide a prompt assessment of rock slope stability. A nonlinear input-output mapping of the rock slope system was constructed using a neural network trained by an extreme learning algorithm. The training data was obtained by using finite element upper and lower bound limit analysis methods. The newly developed techniques in this study can either estimate the factor of safety for a rock slope or obtain the implicit parameters through back analyses. Back analysis parameter identification was performed using a terminal steepest descent algorithm based on the finite-time stability theory. This algorithm not only guarantees finite-time error convergence but also achieves exact zero convergence, unlike the conventional steepest descent algorithm in which the training error never reaches zero. Crown Copyright (C) 2016 Published by Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据