4.6 Article

The Effect of Flavonoid Aglycones on the CYP1A2, CYP2A6, CYP2C8 and CYP2D6 Enzymes Activity

期刊

MOLECULES
卷 24, 期 17, 页码 -

出版社

MDPI
DOI: 10.3390/molecules24173174

关键词

flavonoids; CYP1A2; CYP2A6; CYP2C8; CYP2D6; inhibition

资金

  1. Croatian Science Foundation [UIP-2014-09-5704]

向作者/读者索取更多资源

Cytochromes P450 are major metabolic enzymes involved in the biotransformation of xenobiotics. The majority of xenobiotics are metabolized in the liver, in which the highest levels of cytochromes P450 are expressed. Flavonoids are natural compounds to which humans are exposed through everyday diet. In the previous study, selected flavonoid aglycones showed inhibition of CYP3A4 enzyme. Thus, the objective of this study was to determine if these flavonoids inhibit metabolic activity of CYP1A2, CYP2A6, CYP2C8, and CYP2D6 enzymes. For this purpose, the O-deethylation reaction of phenacetin was used for monitoring CYP1A2 enzyme activity, coumarin 7-hydroxylation for CYP2A6 enzyme activity, 6-alpha-hydroxylation of paclitaxel for CYP2C8 enzyme activity, and dextromethorphan O-demethylation for CYP2D6 enzyme activity. The generated metabolites were monitored by high-performance liquid chromatography coupled with diode array detection. Hesperetin, pinocembrin, chrysin, isorhamnetin, and morin inhibited CYP1A2 activity; apigenin, tangeretin, galangin, and isorhamnetin inhibited CYP2A6 activity; and chrysin, chrysin-dimethylether, and galangin inhibited CYP2C8. None of the analyzed flavonoids showed inhibition of CYP2D6. The flavonoids in this study were mainly reversible inhibitors of CYP1A2 and CYP2A6, while the inhibition of CYP2C8 was of mixed type (reversible and irreversible). The most prominent reversible inhibitor of CYP1A2 was chrysin, and this was confirmed by the docking study.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据