4.3 Review

Immune regulatory molecules as modifiers of semen and fertility: A review

期刊

MOLECULAR REPRODUCTION AND DEVELOPMENT
卷 86, 期 11, 页码 1485-1504

出版社

WILEY
DOI: 10.1002/mrd.23263

关键词

antisperm antibody; blood-testis barrier; fertilization; immune infertility; pregnancy

资金

  1. Department of Science and Technology, Ministry of Science and Technology [SR/WOS-A/LS-38/2017]
  2. Indian Council of Agricultural Research
  3. Charlotte B. Failing Professorship

向作者/读者索取更多资源

Declining fertility rates in both human and animals is a cause for concern. While many of the infertility cases are due to known causes, idiopathic infertility is reported in 30% of the infertile couples. In such cases, 18% of the infertile males carry antisperm antibodies (ASAs). Such data are lacking in livestock, wherein 20-30% of the animals are being culled due to low fertility. In males, the blood-testis barrier (BTB) and biomolecules in the semen provide an immuno-tolerant microenvironment for spermatozoa as they traverse the immunologic milieu of both the male and female reproductive tracts. For example, insults from environmental contaminants, infections and inflammatory conditions are likely to impact the immune privilege state of the testis and fertility. The female mucosal immune system can recognize allogenic spermatozoa-specific proteins affecting sperm kinematics and sperm-zona binding leading to immune infertility. Elucidating the functions and pathways of the immune regulatory molecules associated with fertilization are prerequisites for understanding their impact on fertility. An insight into biomolecules associated with spermatozoal immune tolerance may generate inputs to develop diagnostic tools and modulate fertility. High-throughput sequencing technologies coupled with bioinformatics analyses provides a path forward to define the array of molecules influencing pregnancy outcome. This review discusses the seminal immune regulatory molecules from their origin in the testis until they traverse the uterine environment enabling fertilization and embryonic development. Well-designed experiments and the identification of biomarkers may provide a pathway to understand the finer details of reproductive immunology that will afford personalized therapies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据