4.4 Article

A quantitative screen for metabolic enzyme structures reveals patterns of assembly across the yeast metabolic network

期刊

MOLECULAR BIOLOGY OF THE CELL
卷 30, 期 21, 页码 2721-2736

出版社

AMER SOC CELL BIOLOGY
DOI: 10.1091/mbc.E19-04-0224

关键词

-

资金

  1. Hughes Collaborative Innovation Award program of the Howard Hughes Medical Institute
  2. James Wilhelm Memorial Fund

向作者/读者索取更多资源

Despite the proliferation of proteins that can form filaments or phase-separated condensates, it remains unclear how this behavior is distributed over biological networks. We have found that 60 of the 440 yeast metabolic enzymes robustly form structures, including 10 that assemble within mitochondria. Additionally, the ability to assemble is enriched at branch points on several metabolic pathways. The assembly of enzymes at the first branch point in de novo purine biosynthesis is coordinated, hierarchical, and based on their position within the pathway, while the enzymes at the second branch point are recruited to RNA stress granules. Consistent with distinct classes of structures being deployed at different control points in a pathway, we find that the first enzyme in the pathway, PRPP synthetase, forms evolutionarily conserved filaments that are sequestered in the nucleus in higher eukaryotes. These findings provide a roadmap for identifying additional conserved features of metabolic regulation by condensates/filaments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据