4.4 Article

Improved Vinegar & Wellington calibration for estimation of fluid saturation and porosity from CT images for a core flooding test under geologic carbon storage conditions

期刊

MICRON
卷 124, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.micron.2019.102703

关键词

X-ray CT; Image processing; Two-phase displacement flooding; Saturation mapping; Geologic carbon sequestration

资金

  1. Thousand Talent Program for Outstanding Young Scientists [Y731101B01]
  2. National Natural Science Foundation of China [41807275]
  3. China Postdoctoral Science Foundation [2018M632948]
  4. CAS-ITRI collaborative research funding [CAS-ITRI2019011]

向作者/读者索取更多资源

X-ray computed tomography (CT) of fluid flow in formation rocks is an important characterization technique in geologic carbon sequestration research to provide insight into the migration and capillary trapping of CO2 under reservoir conditions. An improved calibration method adapted from traditional Vinegar & Wellington calibration is proposed to map the 3D pore and fluid distributions from the CT images of CO2/brine displacement flooding. Similar to Vinegar & Wellington calibration, the proposed method adopts the linear scaling law of CT number transformation to mass density. However, different from Vinegar & Wellington calibration that uses a 100% brine-saturated core image and a 100% CO2-saturated core image as references to calculate CO2 and brine saturations at all time steps, the proposed method uses the CT numbers of CO2 and brine to calculate the incremental of CO2 and brine saturations from time step i to time step i + 1. The method is intended for cases in which the two 100% brine saturation and 100% CO2 saturation images can not be successfully obtained. Overall, the improved calibration proposed by this study presents more reasonable results of CO2 and brine distribution in a Berea sandstone core, as compared to traditional Vinegar & Wellington calibration. The reconstructed porosity image agrees with the laminated structure of the Berea sandstone core, and the average porosity evaluated over the entire core (0.176) is comparable to the physical porosity (0.165). Furthermore, the reconstructed saturation images using the improved calibration reveal a flat piston-like flooding front from a homogeneous longitudinal-section of the 3D orthogonal view and preferential fingerings from another non-homogeneous longitudinal-section, which are not present in the reconstructed saturation images using traditional Vinegar & Wellington calibration. Concerns and causes with respect to the uncertainty of linear CT number calibration are also explained, and approaches to alleviate the uncertainty are suggested.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据