4.7 Article

Evaluation of thermal residual stresses of thin-walled laminated composite pipes to characterize the effects of mandrel materials and addition MWCNTs

期刊

MECHANICS OF MATERIALS
卷 136, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.mechmat.2019.103083

关键词

Residual stresses; Mandrel materials; Composite shell; MWCNTs effects; Incremental hole-drilling method

向作者/读者索取更多资源

This research focuses on finding the effects of the addition of multi-walled carbon nanotubes (MWCNTs) and using various mandrel materials on the ply-level thermal residual stresses of thin-walled laminated filament-wound composite pipes. To accomplish this objective, a few specimens were made by considering two various weight fractions, containing 0 and 3%, for MWCNTs and two various mandrel materials, containing aluminum and steel. This study employed the incremental hole drilling method using integral inverse solution for measuring the thermal residual stresses within the structure. This method contains simulation and experimental parts, which both were explained in details entirely. This paper presents analytical discussions and the experimental results to clarify achievements. The results confirmed that adding MWCNTs, as a thermal expansion compensator, to the epoxy matrix modifies the thermal behavior of the epoxy matrix and reduces the thermal residual stresses in the composite pipes. Also, the results show that the residual stresses are strongly affected by the mandrel thermal expansion coefficient. In this case, for example, the specimen manufactured by the steel mandrel experiences less residual stresses compared to which manufactured by the aluminum mandrel.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据