4.7 Article

Adaptive inverse control of chatter vibrations in internal turning operations

期刊

MECHANICAL SYSTEMS AND SIGNAL PROCESSING
卷 129, 期 -, 页码 91-111

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ymssp.2019.04.007

关键词

Active vibration control; Chatter suppression; Boring bar; Stability improvement; FxNLMS algorithm

资金

  1. Ferdowsi University of Mashhad [3/40663]

向作者/读者索取更多资源

In this article, adaptive inverse control of chatter vibrations in internal turning process is addressed. The active boring bar is composed of a slender steel cutting tool, an electrodynamic shaker as controllable actuator and an IEPE accelerometer as feedback sensor. The SISO control system actuates in the direction normal to the cut surface. A novel adaptive inverse control algorithm is presented in this paper. This algorithm is mainly used in the feed-forward Active Noise Control (ANC) applications and is known as the Filtered-x Normalized Least Mean Square (FxNLMS). In order to extend the application of adaptive inverse control algorithms in the field of Active Vibration Control (AVC), the FxNLMS algorithm with feedback architecture is suggested for the specific problem of chatter suppression in internal turning operations. The performance of developed adaptive feedback controller is experimentally verified during the internal turning of Aluminum alloy 6063-T6. The value of critical limiting depth of cut is anticipated to be nearly 0.2 [mm] for the slender boring bar. However, the stable cutting process is conducted by the active boring bar in the presence of adaptive controller up to depth of cut 2 [mm]. That is, the boundary of stability is enhanced by at least 10 folds. It has been observed that the amplitude of chatter vibrations is efficiently suppressed adjacent to the fundamental resonance peak of the active boring bar. In addition, the feedback FxNLMS controller effectively attenuates the boring bar's vibration by at least 70 dBs. Moreover, the periodic chatter marks are eliminated from the surface texture of workpiece and the roughness of cut surface is remarkably improved. The obtained results suggest that the practical application of adaptive inverse control algorithms for chatter rejection can be extended to other machining processes as well. (C) 2019 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据