4.3 Article

Co-culture of human umbilical vein endothelial cells and human bone marrow stromal cells into a micro-cavitary gelatin-methacrylate hydrogel system to enhance angiogenesis

出版社

ELSEVIER
DOI: 10.1016/j.msec.2019.04.089

关键词

Vascularization; Coculture; Human bone marrow stromal cells; Gelatin methacrylate microcavity hydrogel

资金

  1. Grant AcRF Tier 1 and 2 Academic Research Fund, AcRF, Ministry of Education - Singapore, Singapore [2018-T1-001-085, 2016-T2-1-138 (S)]
  2. City University of Hong Kong [SGP 9380099]

向作者/读者索取更多资源

Vascular tissue engineering seeks to develop functional blood vessels that comprise of both endothelial cells and pericytes for translational medicine and is often faced with numerous challenges such as nutrients and wastes diffusion problem in the centre of the scaffolds. Various strategies have been adopted to solve the diffusion problem in thick engineered scaffolds. Typically, microchannels or dissolvable microspheres are introduced into three-dimensional (3D) scaffolds as an alternative way to improve the infiltration of scaffolds and endothelial cells are usually incorporated into the biomaterials. While some research groups now focus on finding supporting cells to build further vascularized structures in the scaffolds. In this study, a bioinspired 3D gelatin-methacrylate (Gel-MA) hydrogel with dissolvable microspheres was created to encapsulate human bone marrow stromal cells (HMSCs) and human umbilical vein endothelial cells (HUVECs) which was used to investigate whether HMSCs could play a pericytes-like role and enhance vascularization within the engineered scaffolds. The results showed co-culture of HMSCs and HUVECs demonstrated significantly improved vascularization when compared to either HUVECs or HMSCs monoculture. Angiogenic genes were expressed significantly higher in co-culture group. Moreover, when implanting the pre-vascularized scaffolds in vivo, co-culture system integrated more successfully with host tissue and showed higher host tissue invasion than any other groups. More importantly, both the qPCR and immunofluorescence results indicated MSCs differentiated towards pericytes to enhance vascularization in this study. This paper highlights the enhanced capability of 3D micro-cavitary Gel-MA hydrogel for co-culturing HUVECs and HMSCs to promote vascularization which presents a potential strategy for future tissue repair and regeneration.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据