4.7 Article

Cyclic tensile strain promotes chondrogenesis of bone marrow-derived mesenchymal stem cells by increasing miR-365 expression

期刊

LIFE SCIENCES
卷 232, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.lfs.2019.116625

关键词

Cyclic tensile strain; miR-365; Chondrogenesis; BMSC

资金

  1. National Natural Science Foundation of China [81772324]

向作者/读者索取更多资源

Aims: The chondrogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) is critical for cartilage regeneration. Tissues constructed from BMSCs through cartilage tissue engineering still exhibit some histological, morphological, and biomechanical differences from normal cartilage tissues. Cyclic tensile strain (CTS) can increase chondrogenic gene expression and reduce hypertrophic gene expression in chondrocytes. miR-365 has been identified as a mechanoresponsive microRNA and is an important regulator of both chondrocyte hypertrophy and differentiation. Therefore, we hypothesized that CTS may promote the chondrogenesis of BMSCs by upregulating the expression of miR-365. Methods: BMSCs were subjected to CTS to investigate the effects and mechanism on chondrogenesis. An Agilent miRNA microarray was used to profile miRNAs in the CTS-treated BMSCs and 3D-cultured control BMSCs. miR-365 was shown to interact with HDAC4 mRNA through a luciferase reporter assay. An animal cartilage defect model was constructed and different groups of BMSCs were implanted to investigate their in vivo effect. Key findings: CTS promoted BMSC chondrogenesis. miR-365 was significantly upregulated in CTS-treated cells and played an important role in CTS-mediated chondrogenesis. Luciferase assays showed that HDAC4 is a direct target of miR-365. An in vivo study showed that CTS treatment and miR-365 overexpression could promote cartilage regeneration from BMSCs. Significance: CTS can promote the expression of miR-365, a crucial mechanosensitive microRNA involved in the chondrogenesis of BMSCs, which directly inhibits the expression of HDAC4, in turn, enhancing the chondrogenesis of BMSCs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据