4.6 Article

Interfacial Forces at Layered Surfaces: Substrate Electrical Double-Layer Forces Acting through Ultrathin Polymer Coatings

期刊

LANGMUIR
卷 35, 期 36, 页码 11679-11689

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.langmuir.9b02176

关键词

-

资金

  1. Australian Research Council [DP160105001, FT160100300]
  2. National Collaborative Research Infrastructure Strategy

向作者/读者索取更多资源

Manipulating the surface properties of materials via the application of coatings is a widely used strategy to achieve desired interfacial interactions, implicitly assuming that the interfacial forces of coated samples are determined exclusively by the surface properties of the coatings. However, interfacial interactions between materials and their environments operate over finite length scales. Thus, the question addressed in this study is whether interactions associated with bulk substrate materials could act through thin coatings or, conversely, how thick a coating needs to be to completely screen subsurface forces contributed by underlying substrates. Plasma polymer layers were deposited on silicon wafer substrates from ethanol vapor, with identical chemical composition, ultrasmooth surface, and varying thicknesses. Using colloid-probe atomic force microscopy, electrical double-layer forces were determined in solutions of various ionic strengths and fitted using the Derjaguin-Landau-Verwey-Overbeek theory. For the thicker ethanol plasma polymers, the fitted surface potentials reflected the presence of surface carboxylate groups and were invariant with thickness. In contrast, for coatings <18 nm thick, the surface potentials increased steadily with decreasing film thickness; the measured electrical double-layer forces contained contributions from both the coating and the substrate. Theoretical calculations were in agreement with this model. Thus, our observations indicate that the higher surface potential of the underlying SiO2 surface can influence the interactions between a colloid particle and the multilayer structure if coatings are sufficiently thin. Such superposition needs to be factored into the design of coatings aimed at the control of material interactions via surface forces.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据