4.6 Article

Three-Dimensional Bacterial Motions near a Surface Investigated by Digital Holographic Microscopy: Effect of Surface Stiffness

期刊

LANGMUIR
卷 35, 期 37, 页码 12257-12263

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.langmuir.9b02103

关键词

-

资金

  1. National Natural Science Foundation of China [21574046, 51573061]
  2. National Natural Science Foundation of Guangdong Province [2019B030301003]
  3. Fundamental Research Funds for the Central Universities

向作者/读者索取更多资源

Surface stiffness plays a critical role in bacterial adhesion, but the mechanism is unclear since the bacterial motion before adhesion is overlooked. Herein, the three-dimensional (3D) motions of Escherichia coli and Pseudonomas sp. nov 776 onto poly(dimethylsiloxane) (PDMS) surfaces with varying stiffness before adhering were monitored by digital holographic microscopy (DHM). As Young's modulus (E) of the PDMS surface decreases from 278.1 to 3.4 MPa, the adhered E. coli and Pseudonomas sp. decrease in number by 40.4 and 34.9%, respectively. Atomic force microscopy (AFM) measurements show that the adhesion force of bacteria to the surface declines with the decreased surface stiffness. In contrast, a nontumbling mutant of adhered E. coli (HCB1414 with the adaptive function being partially deficient) decreases much less (by 18.4%). On the other hand, the tumble frequency (F-t) of E. coli HCB1 and flick frequency (F-f) of Pseudomonas sp. increase as the surface stiffness decreases, and the motion bias (B-theta) of Pseudomonas sp. also increases. These facts clearly indicate that the bacteria have adapted responses to the surface stiffness. RNA sequencing (RNA-seq) reveals that the downregulated Cph2 and CsrA as well as the upregulated GcvA of swimming E. coli HCB1 in bulk near the softer surface promote the bacterial motility.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据