4.3 Article

Neurotoxicity mediated by oxidative stress caused by titanium dioxide nanoparticles in human neuroblastoma (SH-SY5Y) cells

期刊

出版社

ELSEVIER GMBH
DOI: 10.1016/j.jtemb.2019.126413

关键词

Titanium; Nanoparticles; Oxidative stress; Neurotoxicity; Apoptosis

资金

  1. University of Buenos Aires [UBACyT 20020150100032BA]
  2. National Council of Scientific and Technical Research, Argentina [PIP 11220130100091]
  3. School of Dentistry of the University of Buenos Aires [FOUBA] [330/19-01]
  4. National Agency for the Promotion of Science and Technology [PICT-2017-1309]

向作者/读者索取更多资源

Background: Titanium is widely used in biomedicine. Due to biotribocorrosion, titanium dioxide (TiO2) nano-particles (NPs) can be released from the titanium implant surface, enter the systemic circulation, and migrate to various organs and tissues including the brain. A previous study showed that 5 nm TiO2 NPs reached the highest concentration in the brain. Even though TiO2 NPs are believed to possess low toxicity, little is known about their neurotoxic effects. The aim of the study was to evaluate in vitro the effects of 5 nm TiO2 NPs on a human neuroblastoma (SH-SY5Y) cell line. Methods: Cell cultures were divided into non-exposed and exposed to TiO2 NPs for 24 h. The following were evaluated: reactive oxygen species (ROS) generation, apoptosis, cellular antioxidant response, endoplasmic reticulum stress and autophagy. Results: Exposure to TiO2 NPs induced ROS generation in a dose dependent manner, with values reaching up to 10 fold those of controls (p < 0.001). Nrf2 nuclear localization and autophagy, also increased in a dose dependent manner. Apoptosis increased by 4- to 10-fold compared to the control group, depending on the dose employed. Conclusions: Our results show that TiO2 NPs cause ROS increase, induction of ER stress, Nrf2 cytoplasmic translocation to the nucleus and apoptosis. Thus, neuroblastoma cell response to TiO2 NPs may be associated with an imbalance of the oxidative metabolism where endoplasmic reticulum-mediated signal pathway seems to be the main neurotoxic mechanism.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据