4.5 Article

Experimental and computational analysis of acoustic characteristics of warp-knitted spacer fabrics

期刊

JOURNAL OF THE TEXTILE INSTITUTE
卷 111, 期 4, 页码 491-498

出版社

TAYLOR & FRANCIS LTD
DOI: 10.1080/00405000.2019.1648140

关键词

Warp-knitted spacer fabric; sound absorption; flow resistivity; numerical model; CFD simulation

向作者/读者索取更多资源

As a kind of porous medium, textiles have recently received increased attention for acoustic applications due to their high profitability and low cost and environmental impact. 3D knitted spacer fabrics stand out as a unique class of textile materials. These materials simultaneously are soft, voluminous and highly porous and therefore are expected to be suitable for sound absorbing applications. This article aims to investigate the acoustic performance of 3D warp-knitted spacer fabrics. To this end, acoustic behavior of warp-knitted spacer fabrics was experimentally measured using the impedance tube method. In order to predict the sound absorption behavior of fabrics, a simple geometrical model was created. Flow resistivity was calculated by numerically solving incompressible laminar Newtonian flow through the 3D pore space of generated structure. The frequency-dependent sound absorption coefficient of the warp-knitted spacer fabric was predicted using the empirical models of Delany and Bazley, Garai and Pompoli and Dunn and Davern. The results showed that the Dunn and Davern model can predict sound absorption characteristics of warp-knitted spacer fabrics in the mid-to high-frequency ranges. At low frequency ranges; however, none of the empirical models can reasonably predict sound absorption behavior of the fabrics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据