4.5 Article

Ion Mobility Spectrometry: Fundamental Concepts, Instrumentation, Applications, and the Road Ahead

期刊

出版社

SPRINGER
DOI: 10.1007/s13361-019-02288-2

关键词

Ion mobility spectrometry; IMS; Untargeted metabolomics; Mass spectrometry

资金

  1. NIH National Institute of Environmental Health Sciences [P42 ES027704]
  2. North Carolina State University

向作者/读者索取更多资源

Ion mobility spectrometry (IMS) is a rapid separation technique that has experienced exponential growth as a field of study. Interfacing IMS with mass spectrometry (IMS-MS) provides additional analytical power as complementary separations from each technique enable multidimensional characterization of detected analytes. IMS separations occur on a millisecond timescale, and therefore can be readily nested into traditional GC and LC/MS workflows. However, the continual development of novel IMS methods has generated some level of confusion regarding the advantages and disadvantages of each. In this critical insight, we aim to clarify some common misconceptions for new users in the community pertaining to the fundamental concepts of the various IMS instrumental platforms (i.e., DTIMS, TWIMS, TIMS, FAIMS, and DMA), while addressing the strengths and shortcomings associated with each. Common IMS-MS applications are also discussed in this review, such as separating isomeric species, performing signal filtering for MS, and incorporating collision cross-section (CCS) values into both targeted and untargeted omics-based workflows as additional ion descriptors for chemical annotation. Although many challenges must be addressed by the IMS community before mobility information is collected in a routine fashion, the future is bright with possibilities.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据