4.8 Article

Strongly Lewis Acidic Metal-Organic Frameworks for Continuous Flow Catalysis

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 141, 期 37, 页码 14878-14888

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jacs.9b07891

关键词

-

资金

  1. NSF [CHE-1464941]
  2. U.S. DOE [DE-AC02-06CH11357]

向作者/读者索取更多资源

The synthesis of highly acidic metal-organic frameworks (MOFs) has attracted significant research interest in recent years. We report here the design of a strongly Lewis acidic MOF, ZrOTf-BTC, through two-step transformation of MOF-808 (Zr-BTC) secondary building units (SBUs). Zr-BTC was first treated with 1 M hydrochloric acid solution to afford ZrOH-BTC by replacing each bridging formate group with a pair of hydroxide and water groups. The resultant ZrOH-BTC was further treated with trimethylsilyl triflate (Me3SiOTf) to afford ZrOTf-BTC by taking advantage of the oxophilicity of the Me3Si group. Electron paramagnetic resonance spectra of Zr-bound superoxide and fluorescence spectra of Zr-bound N-methylacridone provided a quantitative measurement of Lewis acidity of ZrOTf-BTC with an energy splitting (Delta E) of 0.99 eV between the pi(x)* and pi(y)* orbitals, which is competitive to the homogeneous benchmark Sc(OTf)(3). ZrOTf-BTC was shown to be a highly active solid Lewis acid catalyst for a broad range of important organic transformations under mild conditions, including Diels-Alder reaction, epoxide ring-opening reaction, Friedel-Crafts acylation, and alkene hydroalkoxylation reaction. The MOF catalyst outperformed Sc(OTf)(3) in terms of both catalytic activity and catalyst lifetime. Moreover, we developed a ZrOTf-BTC@SiO2 composite as an efficient solid Lewis acid catalyst for continuous flow catalysis. The Zr centers in ZrOTfBTC@SiO2 feature identical coordination environment to ZrOTf-BTC based on spectroscopic evidence. ZrOTf-BTC@SiO2 displayed exceptionally high turnover numbers (TONs) of 1700 for Diels-Alder reaction, 2700 for epoxide ring-opening reaction, and 326 for Friedel-Crafts acylation under flow conditions. We have thus created strongly Lewis acidic sites in MOFs via triflation and constructed the MOF@SiO2 composite for continuous flow catalysis of important organic transformations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据