4.7 Article

Methods for evaluating in-duct noise attenuation performance in a muffler design problem

期刊

JOURNAL OF SOUND AND VIBRATION
卷 464, 期 -, 页码 -

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jsv.2019.114982

关键词

Muffler design; Noise attenuation performance; Transmission loss; Insertion loss; Level difference; Topology optimization

资金

  1. Basic Science Research Program through the National Research Foundation of Korea (NRF) - Ministry of Education [2016R1D1A1B03932357]
  2. National Research Foundation of Korea [2016R1D1A1B03932357] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

In this study, methods for evaluating the noise attenuation performance of a muffler in a muffler design problem are investigated, and a proper evaluation method is suggested for actual noise reduction in a duct when an optimally designed muffler is mounted on a duct. Mathematical expressions of the transmission loss, insertion loss, and level difference for a simple expansion chamber muffler are developed from basic acoustic equations. The effects of the locations of the measurement points, tailpipe length, and impedance at the end of the duct on the noise attenuation performance calculated using the three evaluation methods are discussed. The TL and IL maximization problems formulated using topology optimization are solved for a muffler unit, and the noise attenuation performances of the optimally designed mufflers are compared when mounted on a duct. Another acoustical topology optimization problem, a partition volume minimization problem for a muffler design, is formulated to reduce the in-duct broadband noise, and the noise attenuation performance of the optimal muffler obtained using this formulation is experimentally validated. These research results will contribute to the development of a muffler design method with high accuracy by reducing the discrepancy between the noise attenuation performances of a muffler unit and a muffler mounted on a duct. (C) 2019 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据