4.6 Article

On the Lithiation Mechanism of Amorphous Silicon Electrodes in Li-Ion Batteries

期刊

JOURNAL OF PHYSICAL CHEMISTRY C
卷 123, 期 36, 页码 22027-22039

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpcc.9b06011

关键词

-

资金

  1. Deutsche Forschungsgemeinschaft (DFG) [Schm 1569/25]

向作者/读者索取更多资源

Amorphous silicon is a high-capacity negative electrode material for use in advanced lithium-ion batteries. We investigated the mechanism of Li incorporation into and removal from this material during electrochemical lithiation and delithiation using a combination of in operando neutron reflectometry and ex situ secondary ion mass spectrometry. The results indicate that a heterogeneous lithiation mechanism is present for the first cycle and also for subsequent cycles during lithiation and delithiation, where a highly lithiated phase penetrates the silicon electrode. During the first lithiation half-cycle, a two-step process takes place, which is not present for delithiation and higher cycles. In the first step, a Li-poor phase penetrates the silicon electrode leading to about 10% of maximum capacity. Afterward, during the second step, a Li-rich phase moves into the electrode leading to complete lithiation in a slower process. The different phases are separated by a relatively sharp interface of only several nanometers. The Li-poor phase extended over the entire electrode is still present after delithiation in the form of irreversibly trapped Li.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据