4.6 Article

Multireference Ab Initio Studies of Magnetic Properties of Terbium-Based Single-Molecule Magnets

期刊

JOURNAL OF PHYSICAL CHEMISTRY A
卷 123, 期 32, 页码 6996-7006

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpca.9b03708

关键词

-

资金

  1. Department of Energy (DOE) Basic Energy Sciences (BES) [DE-SC0018326]
  2. San Diego Supercomputer Center (SDSC) [DMR060009N]

向作者/读者索取更多资源

We investigate how different chemical environments influence magnetic properties of terbium(III) (Tb)-based single-molecule magnets (SMMs), using first-principles relativistic multireference methods. Recent experiments showed that Tb-based SMMs can have exceptionally large magnetic anisotropy and that they can be used for experimental realization of quantum information applications, with a judicious choice of chemical environment. Here, we perform complete active space self-consistent field calculations including relativistic spin-orbit interaction for representative Tb-based SMMs such as TbPc2 and TbPcNc in three charge states. We calculate the low-energy electronic structure from which we compute the Tb crystal-field (CF) parameters and construct an effective pseudospin Hamiltonian. Our calculations show that the ligand type and fine points of molecular geometry do not affect the gap between the ground-state and first-excited doublets, whereas the latter varies weakly with oxidation number. On the other hand, higher-energy levels have a strong dependence on all these characteristics. For neutral TbPc2 and TbPcNc molecules, the Tb magnetic moment and ligand spin are parallel to each other and the coupling strength between them does not depend much on the ligand type and details of the atomic structure. However, ligand distortion and molecular symmetry play a crucial role in transverse CF parameters which lead to tunnel splitting. The tunnel splitting induces quantum tunneling of magnetization by itself or by combining with other processes. Our results provide insights into the mechanisms of magnetization relaxation in the representative Tb-based SMMs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据