4.6 Review

Applications of photocatalytic titanium dioxide-based nanomaterials in sustainable agriculture

出版社

ELSEVIER
DOI: 10.1016/j.jphotochemrev.2019.06.001

关键词

TiO2 sustainable agriculture; Nanofertilizer; Rhizosphere translocation; Agricultural photocatalysis; Disinfection; Nanotoxicology; Non-thermal plasma

资金

  1. National Council of Science and Technology CONACyT-Mexico
  2. Private University Research Branding Project (2017-2021) from Ministry of Education, Culture, Sports, Science and Technology

向作者/读者索取更多资源

Photocatalytic materials are attracting attention as emerging resources for agricultural applications. This timely review assesses the current developments in the use of biocompatible titanium dioxide (TiO2)-based photocatalytic nanomaterials (TiO2-PN) as models to unravel agricultural growth, harvest, and post-harvest problems. Such developments can lead to technological innovations aimed at addressing the pressing global environmental challenges faced by farming. TiO2-PN have been used as antimicrobial, growth-regulating, and fertilizer-like agents. The promising agricultural research applications of TiO2-PN are highlighted along with a discussion of the main challenges that will need to be overcome to fully understand the roles of TiO2-PN in the sustainable and productive exploitation of land and water for agricultural applications under natural conditions. In particular, rhizosphere internalization, translocation, and plant bioaccumulation pathways of photocatalytic materials from environmental exposition are outlined to illustrate the effect of TiO2 on the agricultural cycle. Nanotoxicology and regulations are also discussed to illustrate the importance of biocompatibility and green synthesis of nanomaterials for safe use in real applications. This overview is focused on motivating and intensifying our understanding of on-site agricultural studies. Complementary biological approaches and structural damage observed by biological transmission electron, scanning electron, and optical microscopies should accelerate the practical contribution of TiO2-PN to sustainable agriculture in conjunction with plant factories and plasma nitrogen fixation technology. Loadings below 10 mu g/L of TiO2-PN with a size of 40 nm benefit seed germination and root elongation as well as partially suppressing metal root translocation. However, only approximately 5% of current studies were carried out in real agricultural settings. (C) 2019 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据