4.5 Article

Development of Hydrogels for Microneedle-Assisted Transdermal Delivery of Naloxone for Opioid-Induced Pruritus

期刊

JOURNAL OF PHARMACEUTICAL SCIENCES
卷 108, 期 11, 页码 3695-3703

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.xphs.2019.08.025

关键词

naloxone; transdermal delivery; ionization; microneedles; Carbopol; rheology

资金

  1. National Institutes of Health, United States [1R35GM124551]

向作者/读者索取更多资源

Transdermal naloxone delivery could be a potential option for treating opioid-induced pruritus, but naloxone does not permeate skin well because of its hydrophilic nature. Microneedles (MNs) could overcome the skin barrier by painlessly creating microchannels in the skin to permit naloxone absorption to therapeutic levels. This study investigated how ionization correlates with naloxone permeation across MN-treated skin. Hydrogels containing 0.2, 0.5, or 1% naloxone were formulated with 1% cross-linked polyacrylic acid (polymer) and adjusted to pH 5, 6.5, or 7.4. Porcine skin was treated with MNs and naloxone gel, and in vitro permeation studies were performed using an in-line diffusion setup. Gel structural properties were evaluated using rheology. All gels had viscoelastic properties and good spreadability. Naloxone permeation through intact skin was highest from pH 7.4 gels when naloxone is unionized, in contrast with undetectable concentrations permeated from pH 5 gels with 100% ionization. Combining MN treatment with pH 5 gels significantly enhanced permeation and resulted in steady-state flux that would achieve therapeutic delivery. Absorption lag time was affected by MN length and naloxone gel concentration. Polymer concentration did not influence drug permeability. This study demonstrates that transdermal naloxone delivery with MNs is a viable treatment option for opioid-induced pruritus. (c) 2019 American Pharmacists Association (R). Published by Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据