4.6 Article

Novel g-C3N4/TiO2 nanorods with enhanced photocatalytic activity for water treatment and H2 production

期刊

出版社

SPRINGER
DOI: 10.1007/s10854-019-02173-4

关键词

-

资金

  1. Science and Technology Key Project from Education Department of Henan Province [16A430003]
  2. Natural Science Project from Science and Technology Department of Henan Province [172102210231]
  3. Science Foundation of Henan University of Technology [2014YWQN04, 2013JCYJ07, 2014BS007]

向作者/读者索取更多资源

The g-C3N4 was peeled off into nanosheets structure by ultrasonic, and then combined with TiO2 nanorods, the obtained composite was subjected to secondary high-temperature calcination to obtain a photocatalyst with smaller interfacial spacing, high photoelectron transfer rate and high photocatalytic performance. The structure was characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Raman spectrometry, Fourier transform infrared (FTIR) spectroscopy. It was found that g-C3N4 in the form of nanosheets was uniformly attached to the surface of TiO2 nanorods. UV-Vis diffuse reflection spectra (UV-Vis) and Photoluminescence (PL) spectra were obtained to confirm that full coverage of the ultraviolet region to the visible region was achieved and the recombination of photogenerated electron-hole pairs was effectively inhibited. Degradation experiments and hydrogen evolution experiments showed that the composites photocatalytic properties were enhanced. The degradation rate of rhodamine B (RhB) at 35 min is achieved 98.5%, hydrogen production rate as high as 150 umol/g/h. The catalyst has very good photocatalytic stability. The research in this paper has an important impact on the photocatalytic preparation of hydrogen.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据