4.6 Article

Additive manufacturing of NiTi shape memory alloys using pre-mixed powders

期刊

JOURNAL OF MATERIALS PROCESSING TECHNOLOGY
卷 271, 期 -, 页码 152-161

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jmatprotec.2019.03.025

关键词

3D printing; Directed energy deposition; Selective laser melting; Electron beam melting; Shape memory alloys; Powders

资金

  1. National Research Foundation (NRF), Singapore

向作者/读者索取更多资源

This work presents a comparative study on the in-situ alloying of NiTi shape memory alloys (SMAs) by directed energy deposition (DED), selective laser melting (SLM) and selective electron beam melting (SEBM) processes using pre-mixed Ni-Ti powders. The influence of process parameters on the microstructural homogeneity, phase formation and thermomechanical properties of NiTi alloy has been systematically studied. DED could build solid NiTi alloys with good interlayer fusion and phase transformation characteristics. However, a substantial amount of uniformly dispersed Ti2Ni intermetallics can embrittle this material. SLM-built NiTi parts show a tradeoff between microstructural inhomogeneity and keyhole defects when the energy densities are varied. In addition, the strong exothermic reaction in Ni-Ti powder mixtures during printing can disturb the melt pool, making it challenging to elaborate this material and obtain desired phases by using SLM. Moreover, SEBM is found to be unsuitable to in-situ synthesize this highly reactive material due to the lack-of-fusion vs. powder-ignition dilemma in the mandatory preheating step. It is suggested to adopt DED to in-situ alloy NiTi parts when using the elementally blended powders as feedstocks.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据