4.5 Article

Prediction and Experimental Validation of Part Thermal History in the Fused Filament Fabrication Additive Manufacturing Process

出版社

ASME
DOI: 10.1115/1.4045056

关键词

fused filament fabrication; thermal history; finite element modeling; in-process temperature measurement; infrared thermocouples; additive manufacturing; modeling and simulation; rapid prototyping and solid freeform fabrication; sensing; monitoring and diagnostics

资金

  1. National Science Foundation (NSF) [CMMI-1719388, CMMI-1739696, CMMI-1752069]

向作者/读者索取更多资源

Part design and process parameters directly influence the instantaneous spatiotemporal distribution of temperature in parts made using additive manufacturing (AM) processes. The temporal evolution of temperature in AM parts is termed herein as the thermal profile or thermal history. The thermal profile of the part, in turn, governs the formation of defects, such as porosity and shape distortion. Accordingly, the goal of this work is to understand the effect of the process parameters and the geometry on the thermal profile in AM parts. As a step toward this goal, the objectives of this work are two-fold. First, to develop and apply a finite element-based framework that captures the transient thermal phenomena in the fused filament fabrication (FFF) additive manufacturing of acrylonitrile butadiene styrene (ABS) parts. Second, validate the model-derived thermal profiles with experimental in-process measurements of the temperature trends obtained under different material deposition speeds. In the specific context of FFF, this foray is the critical first-step toward understanding how and why the thermal profile directly affects the degree of bonding between adjacent roads (linear track of deposited material), which in turn determines the strength of the part, as well as, propensity to form defects, such as delamination. From the experimental validation perspective, we instrumented a Hyrel Hydra FFF machine with three non-contact infrared temperature sensors (thermocouples) located near the nozzle (extruder) of the machine. These sensors measure the surface temperature of a road as it is deposited. Test parts are printed under three different settings of feed rate, and subsequently, the temperature profiles acquired from the infrared thermocouples are juxtaposed against the model-derived temperature profiles. Comparison of the experimental and model-derived thermal profiles confirms a high degree of correlation therein, with a mean absolute percentage error less than 6% (root mean squared error <6 degrees C). This work thus presents one of the first efforts in validating thermal profiles in FFF via direct in situ measurement of the temperature. In our future work, we will focus on predicting defects, such as delamination and inter-road porosity based on the thermal profile.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据