4.4 Article

Electric field effect on dynamic analysis of smart porosity-dependent nanocomposite sandwich plate resting on silica aerogel foundation considering carbon nanotubes agglomeration

期刊

出版社

SAGE PUBLICATIONS LTD
DOI: 10.1177/1045389X19873417

关键词

smart dynamic analysis; nanocomposite sandwich plate; hyperbolic shear and normal deformation theory; continuum foundation model; porosity dependent; piezoelectric

向作者/读者索取更多资源

In this study, the influence of carbon nanotubes agglomeration is investigated on the electroelastic dynamic behavior of a sandwich plate. The smart sandwich plate consists of functionally graded porous layer as the core and piezoelectric layers as the face sheets, which is subjected to the harmonic electrical loading. In order to take into account the continuum model for the silica aerogel foundation of the smart structure, the modified Vlasov's model is applied. The porosity distribution of the core layer varies non-uniformly throughout the thickness due to the non-uniform function. The equivalent material properties of nanocomposite core layer are determined using the Eshelby-Mori-Tanaka approach, in which the influence of carbon nanotube agglomeration is considered. For modeling the electroelastic fact sheets behavior, the piezoelasticity theory is adopted. On the basis of non-polynomial shear and normal deformation theory, the governing equations of motion are inferred applying the Hamilton's principle and the obtained equations are solved by an iterative procedure. The verification is accomplished through the available results in the literature and the influences of carbon nanotube agglomeration, different geometrical parameters, porosity index, and applied voltage are assessed on the dynamic deflection of nanocomposite sandwich plate.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据