4.7 Article

Construction of novel Z-scheme Ag/ZnFe2O4/Ag/BiTa1-xVxO4 system with enhanced electron transfer capacity for visible light photocatalytic degradation of sulfanilamide

期刊

JOURNAL OF HAZARDOUS MATERIALS
卷 375, 期 -, 页码 161-173

出版社

ELSEVIER
DOI: 10.1016/j.jhazmat.2019.04.081

关键词

Electron transfer capacity; Photocatalytic; Visible light; Sulfanilamide; Ag/ZnFe2O4/Ag/BiTa1-xVxO4

资金

  1. National Natural Science Foundation of China [41771503]
  2. Innovative Team Project of Education Department of Liaoning Province of China [LT2018018]
  3. Key Laboratory Project of Shenyang Municipal Science and Technology Plan of China [19-109-1-003]
  4. University of Cincinnati through a UNESCO
  5. Herman Schneider Professorship in the College of Engineering and Applied Sciences

向作者/读者索取更多资源

A novel Z-scheme system, Ag/ZnFe2O4/Ag/BiTa1-xVxO4 with enhanced electron transfer capacity was constructed for degrading sulfanilamide (SAM) using solar light. The photocatalytic activity of Ag/ZnFe2O4/Ag/BiTa1-xVxO4 was investigated. The effects of the mass ratio (ZnFe2O4:BiTaO4), doped V dose, Ag wt.% content, and irradiation time on the catalytic performance were evaluated. The reasonable mechanism of Ag/ZnFe2O4/Ag/BiTa1-xVxO4 solar photocatalytic degradation was also presented. These results reveal Ag/ZnFe2O4/Ag/BiTa1-xVxO4 possesses enhanced photocatalytic performance. The loaded Ag as electron mediator increases the electron transfer rate. Particularly, the doped V and the Fe ions from ZnFe2O4 form a powerful electron driving force, which enhances the electron transfer capacity. Ag/ZnFe2O4/Ag/BiTa1-xVxO4 shows optimal photocatalytic performance at 2.0 wt.% Ag and 0.5% doped V dose (ZnFe2O4:BiTaO4 = 1.0:0.5). Also, Ag/ZnFe2O4/Ag/BiTa1-xVxO4 exhibits high stability and repeatability in photocatalytic degradation. Several active species (center dot OH, center dot O-2(-), and h(+)) are produced in the Z-scheme photodegradation of SAM. These results on the enhanced photocatalytic activity of Ag/ZnFe2O4/Ag/BiTa1-xVxO4 are ascribed to synergistic photocatalytic effects of ZnFe2O4 and BiTa1-xO4 mediated through Ag and driven by doped V and Fe ions. Therefore, the Z-scheme Ag/ZnFe2O4/Ag/BiTa1-xVxO4 photocatalytic technology proves to be promising for the solar photocatalytic treatment of antibiotics under solar light.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据