4.7 Article

Plant functional diversity drives carbon storage following vegetation restoration in Loess Plateau, China

期刊

JOURNAL OF ENVIRONMENTAL MANAGEMENT
卷 246, 期 -, 页码 668-678

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jenvman.2019.06.054

关键词

C storage; Structural equation model; Functional diversity; Vegetation restoration; Loess plateau

资金

  1. National Natural Sciences Foundation of China [41671280]
  2. Key foreign cooperation project of the Chinese Academy of Sciences [161461KYSB20170013]
  3. Key cultivation project of the Chinese Academy of Sciences

向作者/读者索取更多资源

Ongoing climatic changes induced by human activities increases in atmospheric carbon dioxide (CO2), which have considerable effects on the structure and function of ecosystems, including carbon (C) storage, plant functional traits and therefore on a wide set of ecosystem services. Plant functional diversity is benefit to improve plant photosynthesis and enhance C efficiency and therefore decrease CO2. Here, the focus of this article is on integrating of plant functional diversity and C storage, which aims to contribute to C sequestration for climate change mitigation following vegetation restoration in Loess Plateau, China. Firstly, the CWM (plant community-weighted mean) traits of the most abundant plant species can account for C storage in AGBC (above-ground biomass C), ALC (above-ground litter C), STC (soil total carbon) and TEC (total ecosystem carbon). Secondly, the CWM of plant height and LCC (leaf carbon concentration) had a positive effect C storage in different part (AGBC, ALC, STC and TEC), while the CWM of LNC (leaf nitrogen concentration) and SLA (specific leaf area) had a negative effect on C storage in different part. Further, the CWM of plant height, LCC, SLA and plant functional dispersion (FDis) can be used to predict C storage by multiple linear regression analysis. Finally, the positive association between FDis and C storage was found in SEM, shedding light on the key role of plant functional diversity driving C storage following vegetation restoration. The findings presented here highlight the importance of both plant traits of dominant species and plant functional diversity in regulating C storage, and show that favorable climate conditions, particularly vegetation restoration, tend to increase C storage and plant functional diversity, which have important implications for improving global C cycling and ecosystem services.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据