4.7 Article

T-Cell Receptor Gene Therapy for Human Papillomavirus-Associated Epithelial Cancers: A First-in-Human, Phase I/II Study

期刊

JOURNAL OF CLINICAL ONCOLOGY
卷 37, 期 30, 页码 2759-+

出版社

AMER SOC CLINICAL ONCOLOGY
DOI: 10.1200/JCO.18.02424

关键词

-

类别

资金

  1. National Institutes of Health Intramural Research Program
  2. Kite Pharma, a Gilead Company

向作者/读者索取更多资源

PURPOSE Genetically engineered T-cell therapy is an emerging treatment of hematologic cancers with potential utility in epithelial cancers. We investigated T-cell therapy for the treatment of metastatic human papillomavirus (HPV)-associated epithelial cancers. METHODS This phase I/II, single-center trial enrolled patients with metastatic HPV16-positive cancer from any primary tumor site who had received prior platinum-based therapy. Treatment consisted of autologous genetically engineered T cells expressing a T-cell receptor directed against HPV16 E6 (E6 T-cell receptor T cells), a conditioning regimen, and systemic aldesleukin. RESULTS Twelve patients were treated in the study. No dose-limiting toxicities were observed in the phase I portion. Two patients, both in the highest-dose cohort, experienced objective tumor responses. A patient with three lung metastases experienced complete regression of one tumor and partial regression of two tumors, which were subsequently resected; she has no evidence of disease 3 years after treatment. All patients demonstrated high levels of peripheral blood engraftment with E6 T-cell receptor T cells 1 month after treatment (median, 30%; range, 4% to 53%). One patient's resistant tumor demonstrated a frameshift deletion in interferon gamma receptor 1, which mediates response to interferon gamma, an essential molecule for T-cell-mediated antitumor activity. Another patient's resistant tumor demonstrated loss of HLA-A*02:01, the antigen presentation molecule required for this therapy. A tumor from a patient who responded to treatment did not demonstrate genetic defects in interferon gamma response or antigen presentation. CONCLUSION Engineered T cells can induce regression of epithelial cancer. Tumor resistance was observed in the context of T-cell programmed death-1 expression and defects in interferon gamma and antigen presentation pathway components. These findings have important implications for development of cellular therapy in epithelial cancers. (C) 2019 by American Society of Clinical Oncology

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据