4.7 Article

Fly ash based geopolymer for the adsorption of anionic surfactant from aqueous solution

期刊

JOURNAL OF CLEANER PRODUCTION
卷 229, 期 -, 页码 232-243

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.jclepro.2019.04.384

关键词

Surfactants; Adsorption; Fly ash; Geopolymers; SDBS

资金

  1. Universiti Teknologi PETRONAS, Malaysia

向作者/读者索取更多资源

Contamination of the world's water resources is a growing issue and its remediation requires the development of highly efficient, environmentally friendly and economical processes. Water contaminated with surfactants can cause detrimental health effects in humans and aquatic animals. Removing surfactants using adsorption is effective, simple and economical. This paper describes the development of a fly ash based geopolymer (FAGP) adsorbent for adsorbing the anionic surfactant sodium dodecyl benzene sulfonate (SDBS). The adsorption parameters of the geopolymers were optimized using batch adsorption. The adsorption kinetics, isotherms and thermodynamics were also determined. The FAGP had an amorphous morphology and a surface area of 31.873 m(2)/g. The optimum parameters for adsorbing the SDBS using FAGP were pH 2, contact time 180 min, adsorbent dosage 1 g/L for an initial SDBS concentrations of 880 mg/L. The maximum adsorption capacity of 7143 mg/g was obtained. The adsorption followed pseudo second order kinetics and Langmuir isotherm models suggesting that the adsorption process was chemisorption with monolayer adsorbate coverage. SDBS was adsorbed onto FAGP by electrostatic interactions between the positively charged FAGP and negatively charged SDBS. The activation energy of adsorption was 4.052 kJ/mot and the Gibbs free energy was negative, suggesting the adsorption process was physisorption, endothermic, spontaneous and more favorable at a temperature of 65 degrees C. The adsorption of SDBS onto FAGP occurs through both physisorption and chemisorption. FAGP was proven as a low-cost adsorbent to remove SDBS and could be potentially used for the adsorption of other water contaminating surfactants. (C) 2019 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据