4.7 Article

Calculation of Quantum Chemical Two-Electron Integrals by Applying Compiler Technology on GPU

期刊

JOURNAL OF CHEMICAL THEORY AND COMPUTATION
卷 15, 期 10, 页码 5319-5331

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.jctc.9b00560

关键词

-

资金

  1. European Union [767912]

向作者/读者索取更多资源

In this article, we present an effective approach to calculate quantum chemical two-electron integrals over basis sets consisting of Gaussian-type basis functions on graphical processing unit (GPU). Our framework generates several different variants called routes to the same integral problem with different integral algorithms (McMurchie-Davidson, Head-Gordon-Pople, and Rys) and precision. Each route is benchmarked on more GPU architectures, and with this data, a model is fitted to select the best available route for an integral task given a GPU architecture. Moreover, this approach supports the computation of high angular momentum orbitals up to g effectively on GPU, tested up to cc-pVQZ-sized basis sets. Rigorous analysis is shown regarding the effectiveness of our method. Molecule simulations with several basis sets are measured using NVIDIA GTX 1080 Ti, NVIDIA P100, and NVIDIA V100 cards.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据