4.7 Article

Deflation reveals dynamical structure in nondominant reaction coordinates

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 151, 期 5, 页码 -

出版社

AIP Publishing
DOI: 10.1063/1.5099194

关键词

-

资金

  1. European Commission [ERC CoG 772230]
  2. Deutsche Forschungsgemeinschaft [SFB1114/A04]

向作者/读者索取更多资源

The output of molecular dynamics simulations is high-dimensional, and the degrees of freedom among the atoms are related in intricate ways. Therefore, a variety of analysis frameworks have been introduced in order to distill complex motions into lower-dimensional representations that model the system dynamics. These dynamical models have been developed to optimally approximate the system's global kinetics. However, the separate aims of optimizing global kinetics and modeling a process of interest diverge when the process of interest is not the slowest process in the system. Here, we introduce deflation into state-of-the-art methods in molecular kinetics in order to preserve the use of variational optimization tools when the slowest dynamical mode is not the same as the one we seek to model and understand. First, we showcase deflation for a simple toy system and introduce the deflated variational approach to Markov processes (dVAMP). Using dVAMP, we show that nondominant reaction coordinates produced using deflation are more informative than their counterparts generated without deflation. Then, we examine a protein folding system in which the slowest dynamical mode is not folding. Following a dVAMP analysis, we show that deflation can be used to obscure this undesired slow process from a kinetic model; in this case, a VAMPnet. The incorporation of deflation into current methods opens the door for enhanced sampling strategies and more flexible, targeted model building. Published under license by AIP Publishing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据