4.7 Article

The interfacial zone in thin polymer films and around nanoparticles in polymer nanocomposites

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 151, 期 12, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.5119269

关键词

-

资金

  1. NIST [70NANB15H282]

向作者/读者索取更多资源

We perform coarse-grained simulations of model unentangled polymer materials to quantify the range over which interfaces alter the structure and dynamics in the vicinity of the interface. We study the interfacial zone around nanoparticles (NPs) in model polymer-NP composites with variable NP diameter, as well as the interfacial zone at the solid substrate and free surface of thin supported polymer films. These interfaces alter both the segmental packing and mobility in an interfacial zone. Variable NP size allows us to gain insight into the effect of boundary curvature, where the film is the limit of zero curvature. We find that the scale for perturbations of the density is relatively small and decreases on cooling for all cases. In other words, the interfaces become more sharply defined on cooling, as naively expected. In contrast, the interfacial mobility scale xi for both NPs and supported films increases on cooling and is on the order of a few nanometers, regardless of the polymer-interfacial interaction strength. Additionally, the dynamical interfacial scale of the film substrate is consistent with a limiting value for polymer-NP composites as the NP size grows. These findings are based on a simple quantitative model to describe the distance dependence of relaxation that should be applicable to many interfacial polymer materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据