4.6 Article

Development of porous fabric-hydrogel composite membranes with enhanced ion permeability for microalgal cultivation in the ocean

期刊

JOURNAL OF APPLIED POLYMER SCIENCE
卷 137, 期 5, 页码 -

出版社

WILEY
DOI: 10.1002/app.48324

关键词

crosslinking; membranes; photopolymerization; porous materials; structure-property relationships

向作者/读者索取更多资源

This article presents a strategy to develop the porous fabric-hydrogel composite membranes (PFHCMs) with high nitrate ion (NO3-, a source of a main nutrient, nitrogen) permeability and sufficient mechanical strength required for microalgal cultivation in the ocean. The porous structure in the PFHCMs is generated by using three different types of porogens: water-soluble macromolecules, surfactant micelles, and CaCO3 microparticles. Various PFHCMs, composed mainly of poly(hydroxyethyl methacrylate) hydrogels and cotton fabric, are prepared with varying the content of monomer, initiator, and crosslinker and the type and content of porogen. Their morphological, physical, and mechanical properties are characterized for variables. Among three porogens, the surfactant micelles with a large enough amount produce the optimal PFHCMs with NO3- ion permeability coefficient (5.49 x 10(-8) m(2) min(-1), approximately 5 and 20 times higher than those of the fabric-hydrogel composite membranes, synthesized without any porogen in a previous work, and the commercial cellulose acetate membranes, respectively). Their mechanical strength (i.e., the ultimate stress is 9.37 MPa) is high enough for practical uses. Therefore, these PFHCMs are good candidate membranes in microalgal cultivation for biorefinery and other biomedical applications, including wound dressings. (c) 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020, 137, 48324.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据