4.7 Article

Electrolytic preparation and characterization of VCr alloys in molten salt from vanadium slag

期刊

JOURNAL OF ALLOYS AND COMPOUNDS
卷 803, 期 -, 页码 875-881

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jallcom.2019.06.366

关键词

VCr alloy; Electrodeposition; NaCl-KCl-VCl3-CrCl3 molten salt

资金

  1. National Natural Science Foundation of China [51474141, 51774027]
  2. China Postdoctoral Science Foundation [2019M650848]

向作者/读者索取更多资源

Vanadium slag contains several critical elements like V, Ti, Cr, Fe and Mn. In our previous work, V and Cr have been enriched by selective chlorination, increasing from 10.05% to 14.95% and 5.84%-8.69% separately. V and Cr still maintain the trivalence state in molten salt. In the current work, the electrodeposition behaviors of V3+ and Cr3+ in NaCl-KCl molten salt at 800 degrees C were investigated using cyclic voltammetry (CV) and square wave voltammetry (SWV) with a tungsten electrode. It was found that the reduction processes of V3+ and Cr3+ consist of two steps, M3+/M2+, M2+/M. The diffusion coefficients of V3+ and Cr3+ in NaCl-KCl molten salt were measured by CV. The effect of VCl3/CrCl3 mass ratio on VCr alloy was investigated by a two-electrode under constant voltage. Pure Cr can be obtained at 2.8 V in the NaCl-KCl molten salt, while VCr alloy (3.71 mass % V-94.28 mass% Cr-2.01 mass % O) was obtained when electrolysis voltage was controlled to 2.8 V at 800 degrees C. The composition of VCr alloy can be designed by changing the molten salt composition. This method can be applied for direct preparation of VCr alloy from vanadium slag, thus offering the use of low cost raw materials with direct environmental benefits. (C) 2019 Published by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据