4.7 Article

Systematic Metabolic Engineering of Saccharomyces cerevisiae for Lycopene Overproduction

期刊

JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY
卷 67, 期 40, 页码 11148-11157

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.jafc.9b04519

关键词

lycopene; Saccharomyces cerevisiae; systematic metabolic engineering; enzyme screening; fed-batch fermentation

资金

  1. J1 Biotech Co. Ltd.

向作者/读者索取更多资源

Lycopene is widely used in foods, cosmetics, nutritional supplements, and pharmaceuticals. Microbial production of lycopene has been intensively studied. However, there are few systematic engineering studies on Saccharomyces cerevisiae aimed at achieving high-yield lycopene production. In the current study, by employing a systematic optimization strategy, we screened the key lycopene biosynthetic genes, crtE, crtB, and crtl, from diverse organisms. By adjusting the copy number of these three key genes, knocking out endogenous bypass genes, increasing the supply of the precursor acetyl-CoA, balancing NADPH utilization, and regulating the GAL-inducible system, we constructed a high-yield lycopene-producing strain BS106, which can produce 310 mg/L lycopene in shake-flask fermentation, with gene expression controlled by glucose. In optimized two-stage fed-batch fermentation, BS106 produced 3.28 g/L lycopene in a 7 L fermenter, which is the highest concentration achieved in S. cerevisiae to date. It will decrease the consumption of tomatoes for lycopene extraction and increase the market supply of lycopene.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据