4.7 Article

The role of slow screw dislocations in controlling fast strain avalanche dynamics in body-centered cubic metals

期刊

INTERNATIONAL JOURNAL OF PLASTICITY
卷 124, 期 -, 页码 117-132

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijplas.2019.08.008

关键词

Screw dislocation; BCC crystal; Strain burst; Statistics; Dislocation mechanism

资金

  1. National Science Foundation [CMMI-1024353, CMMI-1727740]

向作者/读者索取更多资源

Plasticity in body centered cubic (BCC) crystals is shown to be controlled by slow screw dislocation motion, owing to the thermally-activated process of kink pair nucleation and migration. Through three dimensional discrete dislocation dynamics simulations, this work unravels the mystery of how such slow screw dislocation behavior contributes to extremely rapid strain bursts in submicron BCC tungsten (W) pillars, which is typical of BCC metals. It is found that strain bursts are dominated by the motion of non-screw dislocations at low strain rate, but are more influenced by screw dislocations at high strain rate. The total, and partial strain burst magnitude due to screw dislocations alone, are found to exhibit rate dependence following a power law statistics with exponent of 0.65. Similar power law statistics are also obeyed for the standard deviation of the corresponding plastic strain rate. The role of screw dislocations is attributed to the changing nature of dislocation source operation at different strain rates. The corresponding spatial distribution of plastic deformation is also discussed based on the uniqueness of the simulation method in reproducing the distribution of slipped area and plastic strain with very high spatial resolution.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据