4.7 Article

Chondroitin-Sulfate-A-Coated Magnetite Nanoparticles: Synthesis, Characterization and Testing to Predict Their Colloidal Behavior in Biological Milieu

期刊

出版社

MDPI
DOI: 10.3390/ijms20174096

关键词

magnetite; chondroitin-sulfate; adsorption; core-shell nanoparticles; surface complexation; surface spectroscopy; chemical stability; coagulation kinetics; colloidal stability; MTT assays

资金

  1. OTKA [NK 84014, TAMOP 4.2.4, A/2-11-1-2012-0001]
  2. University of Szeged

向作者/读者索取更多资源

Biopolymer coated magnetite nanoparticles (MNPs) are suitable to fabricate biocompatible magnetic fluid (MF). Their comprehensive characterization, however, is a necessary step to assess whether bioapplications are feasible before expensive in vitro and in vivo tests. The MNPs were prepared by co-precipitation, and after careful purification, they were coated by chondroitin-sulfate-A (CSA). CSA exhibits high affinity adsorption to MNPs (H-type isotherm). We could only make stable MF of CSA coated MNPs (CSA@MNPs) under accurate conditions. The CSA@MNP was characterized by TEM (size similar to 10 nm) and VSM (saturation magnetization similar to 57 emu/g). Inner-sphere metal-carboxylate complex formation between CSA and MNP was proved by FTIR-ATR and XPS. Electrophoresis and DLS measurements show that the CSA@MNPs at CSA-loading > 0.2 mmol/g were stable at pH > 4. The salt tolerance of the product improved up to similar to 0.5 M NaCl at pH similar to 6.3. Under favorable redox conditions, no iron leaching from the magnetic core was detected by ICP measurements. Thus, the characterization predicts both chemical and colloidal stability of CSA@MNPs in biological milieu regarding its pH and salt concentration. MTT assays showed no significant impact of CSA@MNP on the proliferation of A431 cells. According to these facts, the CSA@MNPs have a great potential in biocompatible MF preparation for medical applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据