4.7 Article

Thermodynamic modeling and exergy analysis of proton exchange membrane fuel cell power system

期刊

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
卷 45, 期 54, 页码 29799-29811

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijhydene.2019.08.203

关键词

Proton exchange membrane fuel cell; Power system; Thermodynamic model; Exergy analysis; Ecological function

资金

  1. National Natural Science Foundation of China [51706153]

向作者/读者索取更多资源

The proton exchange membrane (PEM) fuel cell (PEMFC) is equipped with a series of auxiliary components which consume considerable amount of energy. It is necessary to investigate the design and operation of the PEMFC power system for better system performance. In this study, a typical PEMFC power system is developed, and a thermodynamic model of the system is established. Simulation is carried out, and the power distribution of each auxiliary component in the system, the net power and power efficiency of the system are obtained. This power system uses cooling water for preheating inlet gases, and its energy-saving effect is also verified by the simulation. On this basis, the exergy analysis is applied on the system, and the indexes of the system exergy loss, exergy efficiency and ecological function are proposed to evaluate the system performance. The results show that fuel cell stack and heat exchanger are the two components that cause the most exergy loss. Furthermore, the system performance under various stack inlet temperatures and current densities is also analyzed. It is found that the net power, energy efficiency and exergy efficiency of the system reach the maximum when the stack inlet temperature is about 348.15 K. The ecological function is maintained at a high level when the stack inlet temperature is around 338.15 K. Lower current density increases the system ecological function and the power and exergy efficiencies, and also helps decrease the system exergy loss, but it decreases the system net power. (C) 2019 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据