4.7 Article Proceedings Paper

Dry reforming of methane over Ni/MgO-Al2O3 catalysts: Thermodynamic equilibrium analysis and experimental application

期刊

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
卷 45, 期 8, 页码 5252-5263

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijhydene.2019.07.200

关键词

Dry reforming of methane; Synthesis gas; Gibbs free energy minimization; Chemical equilibrium

向作者/读者索取更多资源

In this study, dry reforming of methane (DRM) employing a Ni/MgO-Al2O3 catalyst was undertaken to evaluate the effects of temperature (650, 700 and 750 degrees C), weight hourly space velocity (7.5, 15 and 30 L h(-1) at) and catalyst MgO content (3, 5 and 10 wt%) on catalytic activity and coke-resistance. The catalysts were prepared by the wet impregnation method and were characterized by wavelength dispersive X-ray fluorescence (XRF),N-2 physisorption, X-ray diffraction (XRD), temperature-programmed reduction (TPR-H-2), temperature-programmed desorption (TPD-NH3), H-2 chemisorption, thermogravimetric/derivative thermogravimetry analysis (TG/DTG) and scanning electron microscopy (SEM). The best conversions of methane (CH4) and carbon dioxide (CO2) and lower coke formation were obtained using higher temperatures, lower WHSV and 5 wt% MgO in the catalyst. The H-2/CO molar ratios obtained were within the expected range for the DRM reaction. The experimental yields of H-2 and CO differed from chemical equilibrium, mainly due to occurrence of the reverse water-gas shift reaction. Thermodynamic analysis of the reaction system, based on minimization of the Gibbs free energy, was performed in order to compare the experimental results with the optimal values for chemical equilibrium conditions, which has indicated that the DRM reaction was favored by higher temperature, lower pressure, and lower CH4/CO2 molar ratio. (C) 2019 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据