4.3 Article

A scalable Euler-Lagrange approach for multiphase flow simulation on spectral elements

出版社

SAGE PUBLICATIONS LTD
DOI: 10.1177/1094342019867756

关键词

Euler-Lagrange; ghost particle algorithm; multiphase flow; fluidization; spectral element

资金

  1. US Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program under the Predictive Science Academic Alliance Program [DE-NA0002378]
  2. National Science Foundation Graduate Research Fellowship [DGE-1315138]

向作者/读者索取更多资源

Multiphase flow can be difficult to simulate with high accuracy due to the wide range of scales associated with various multiphase phenomena. These scales may range from the size of individual particles to the entire domain of interest. Traditionally, large scale systems can only be simulated using averaging approaches that filter out the locations of individual particles. In this work, the Euler-Lagrange method is used to simulate large-scale dense particle systems in which each individual particle is tracked. In order to accomplish this, the highly scalable spectral element code nek5000 has been extended to handle the multiple levels of multiphase coupling in these systems. These levels include what has been called one-, two-, and four-way coupling. Here, each level has been separated to detail the computational impact of each stage. A binned ghost particle algorithm has also been developed to efficiently handle the challenges of two- and four-way coupling in a parallel processing context. The algorithms and their implementations are then shown to scale to 65,536 Message Passing Interface (MPI) ranks in both the strong and weak limits. After this, validation is performed through simulation of a small-scale fluidized bed. Lastly, a large-scale fluidized bed is simulated with 65,536 MPI ranks and is able to capture the unique physics of the onset of fluidization.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据