4.6 Article Proceedings Paper

In-situ pore-scale imaging and image-based modelling of capillary trapping for geological storage of CO2

期刊

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.ijggc.2019.04.017

关键词

Capillary trapping; CO2 storage; Micro-CT; Imaging; Pore-scale modelling

资金

  1. Australian National Low Emissions Coal Research and Development (ANLEC RD)
  2. Australian Coal Association Low Emissions Technology Limited
  3. Australian Government through the Clean Energy Initiative

向作者/读者索取更多资源

We describe an imaging and pore-scale modelling study of capillary trapping in the Paaratte Sandstone formation in the Otway Basin, Australia. Three-dimensional X-ray computed tomography (micro-CT) was used to characterize the pore structure of the reservoir core. We obtain in-situ pore-scale images of the distribution of CO2:brine analogue fluid pairs (octane: brine) within reservoir samples during low capillary number drainage and imbibition flooding experiments. The images were recorded using time-lapse X-ray micro-tomography at elevated pressure. The observed two-phase fluid distributions are consistent with a water wet system. The micro-CT images are used directly as input to a geometrically accurate quasi-static pore-scale simulation model. The validity of the quasi-static assumption is investigated by comparing on a pore-by-pore basis the simulated and imaged fluid distributions. The pore filling states are in good agreement both for drainage and imbibition displacements and the computed capillary trapping curve agrees with experimental data. This indicate that quasistatic pore-scale physics can be used to obtain averaged or continuum flow properties for low capillary number displacements. We perform a sensitivity study of the impact of the advancing contact angle on capillary trapping. The magnitude of residual trapping increases with decreasing contact angle. Land's trapping coefficient increases with increasing contact angle. We compute capillary pressure and relative permeability scanning curves. Simulated relative permeability hysteresis is compared with that predicted by the industry-standard Carlson's and Killough's models. Killough's model reproduces the simulated data more accurately.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据