4.6 Article

A comprehensive work package for energy storage systems as a means of frequency regulation with increased penetration of photovoltaic systems

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.ijepes.2019.03.002

关键词

Energy storage system (ESS); Frequency regulation; Offset control algorithm; Locations of ESS; Renewable energy

资金

  1. Ministry of Energy, Green Technology and Water

向作者/读者索取更多资源

Grid frequency deviation occurs due to the power mismatch and is corrected by a series of control actions carried out by the generators. At present, the correction of the frequency deviation is limited by the ramp rates of generators, which depend on the inertia of their rotating masses. Under the increasing penetration of intermittent renewable energy sources, the task of frequency regulation becomes more demanding in terms of response times due to the frequent power mismatches and reduction of system inertia. An energy storage system (ESS) can be an effective means of regulating the frequency due to its general fast response characteristics. A comprehensive work package is developed in MATLAB/Simulink and Matpower to study how ESS can handle the rapid changes of frequency continuously within a specified window of its state of charge (SOC). This paper includes an IEEE 24-Bus grid network modeling, the sizing of ESS and also proposes ESS controllers with offset control algorithms as the sustainable solution for frequency regulation. As such, the modularity design of the test system allows various types of ESS or loads to be tested. The locations for ESS to be placed on the network are also identified for the best frequency regulation response without causing any grid voltage violations. Meanwhile, the scenarios of high penetration of photovoltaic systems and undersized ESS are also investigated. The results indicate that ESS is able to maintain the grid frequency under the intermittency of photovoltaic systems continuously.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据