4.7 Article

Biocompatiable silk fibroin/carboxymethyl chitosan/strontium substituted hydroxyapatite/cellulose nanocrystal composite scaffolds for bone tissue engineering

期刊

出版社

ELSEVIER
DOI: 10.1016/j.ijbiomac.2019.06.172

关键词

Bone repair scaffold; Silk fibroin; Strontium substituted hydroxyapatite; Cellulose nanocrystal; Bone tissue engineering

资金

  1. National Natural Science Foundation of China [81760796]
  2. Guangxi Young Teachers' Basic Ability Improvement Project [2019KY0352]
  3. Guangxi Health Department Key Project [S201419-05]

向作者/读者索取更多资源

Bone defects arise from trauma, skeletal diseases or tumor resections have become a critical clinical challenge. Biocomposite materials as artificial bone repair materials provide a promising approach for bone regeneration. In this study, we used silk fibroin (SF), carboxymethyl chitosan (CMCS), cellulose nanocrystals (CNCs) and strontium substituted hydroxyapatite (Sr-HAp) to prepare the biocomposite scaffolds of SF/CMCS, SF/CMCS/CNCs, SF/CMCS/CNCs/Sr-HAp. The characterization results showed that all the SF-based scaffolds have a porous spongelike structure with porosities over 80%. In addition, there was a significant increase in compressive strength of SF/CMCS/Sr-HAp/CNCs scaffold when compared to that of SF/CMCS scaffolds, while maintaining high porosity with lower swelling ratio. All the SF-based scaffolds were non-toxic and had a good hemocompatibility. Comparing to the SF/CMCS scaffold, the scaffolds with addition of Sr-HAp and/or CNCs showed enhanced protein adsorption and ALP activity. In addition, higher expression of osteogenic gene markers such as RUNX2, ALP, OCN, OPN, BSP and COL-1 further substantiated the applicability of SF/CMCS/Sr-HAp/CNCs scaffolds for bone related applications. Hence, this study suggests that SF/CMCS/Sr-HAp/CNCs scaffolds have a potential in non-loading bone repair application. (C) 2019 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据