4.7 Article

Optimization of homogenization-sonication technique for the production of cellulose nanocrystals from cotton linter

期刊

出版社

ELSEVIER
DOI: 10.1016/j.ijbiomac.2019.06.241

关键词

Cotton linter; Optimization; CNCs

向作者/读者索取更多资源

Recently, cellulose nanocrystals (CNCs) have attracted a significant interest in different fields including drug delivery, biomedical, and food applications. In this study, homogenization-ultrasonication as a non-hazardous, time-saving, and organic solvent free technique was applied for fabrication of CNCs from cotton linter, containing over 90% cellulose. First, acid hydrolysis was applied on raw cellulose using sulfuric acid at 55, 60 and 65% for 3, 5 and 7 min and at various homogenization speeds. Final CNCs were produced by ultrasonication (350 W) for 3 min. The physicochemical properties of CNCs, particle size, X-ray diffraction (XRD) pattern, Fourier Transform Infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), atomic force microscopy (AFM) and transmission electron microscopy (TEM) were studied. Production yield of CNCs was 59-72%, and their water holding capacity was two times higher than raw cellulose. The average length of CNCs was 133 nm with a width of 10 nm and the XRD pattern revealed a 82% crystallinity degree. The FTIR spectrum detected almost similar frequencies in the raw and crystalline cellulose, while intensity of CNC peaks was reduced. TEM results showed rod-like CNCs with a length of 229 nm. TGA results also showed that thermal stability of CNCs was reduced compared to raw cellulose. (C) 2019 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据