4.7 Article

FusionGAN: A generative adversarial network for infrared and visible image fusion

期刊

INFORMATION FUSION
卷 48, 期 -, 页码 11-26

出版社

ELSEVIER
DOI: 10.1016/j.inffus.2018.09.004

关键词

Image fusion; Infrared image; Visible image; Generative adversarial network; Deep learning

资金

  1. National Natural Science Foundation of China [61773295, 61503288]
  2. Beijing Advanced Innovation Center for Intelligent Robots and Systems [2016IRS15]

向作者/读者索取更多资源

Infrared images can distinguish targets from their backgrounds on the basis of difference in thermal radiation, which works well at all day/night time and under all weather conditions. By contrast, visible images can provide texture details with high spatial resolution and definition in a manner consistent with the human visual system. This paper proposes a novel method to fuse these two types of information using a generative adversarial network, termed as FusionGAN. Our method establishes an adversarial game between a generator and a discriminator, where the generator aims to generate a fused image with major infrared intensities together with additional visible gradients, and the discriminator aims to force the fused image to have more details existing in visible images. This enables that the final fused image simultaneously keeps the thermal radiation in an infrared image and the textures in a visible image. In addition, our FusionGAN is an end-to-end model, avoiding manually designing complicated activity level measurements and fusion rules as in traditional methods. Experiments on public datasets demonstrate the superiority of our strategy over state-of-the-arts, where our results look like sharpened infrared images with clear highlighted targets and abundant details. Moreover, we also generalize our FusionGAN to fuse images with different resolutions, say a low-resolution infrared image and a high-resolution visible image. Extensive results demonstrate that our strategy can generate clear and clean fused images which do not suffer from noise caused by upsampling of infrared information.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据