4.6 Article

Gas-phase removal of indoor volatile organic compounds and airborne microorganisms over mono- and bimetal-modified (Pt, Cu, Ag) titanium(IV) oxide nanocomposites

期刊

INDOOR AIR
卷 29, 期 6, 页码 979-992

出版社

WILEY
DOI: 10.1111/ina.12595

关键词

copper; LED diodes; molds; photocatalytic activity; silver particles; titanium(IV) oxide

向作者/读者索取更多资源

The photocatalytic deactivation of volatile organic compounds and mold fungi using TiO2 modified with mono- and bimetallic (Pt, Cu, Ag) particles is reported in this study. The mono- and bimetal-modified (Pt, Cu, Ag) titanium(IV) oxide photocatalysts were prepared by chemical reduction method and characterized using XRD, XPS, DR/UV-Vis, BET, and TEM analysis. The effect of incident light, type and content of mono- and bimetallic nanoparticles deposited on titanium(IV) oxide was studied. Photocatalytic activity of as-prepared nanocomposites was examined in the gas phase using LEDs array. High photocatalytic activity of Ag/Pt-TiO2 and Cu/Pt-TiO2 in the reaction of toluene degradation resulted from improved efficiency of interfacial charge transfer process, which was consistent with the fluorescence quenching effect revealed by photoluminescence (PL) emission spectra. The photocatalytic deactivation of Penicillium chrysogenum, a pathogenic fungi present in the indoor environment, especially in a damp or water-damaged building using mono- and bimetal-modified (Pt, Cu, Ag) titanium(IV) oxide was evaluated for the first time. TiO2 modified with mono- and bimetallic NPs of Ag/Pt, Cu, and Ag deposited on TiO2 exhibited improved fungicidal activity under LEDs illumination than pure TiO2.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据